KEYWORDS

Pluripotency

Metabolism

Proteomics

Epigenetics

Epitranscriptomics

BIO

The goal of my PhD training was to find out novel signaling pathways affected by oxidative stress in two relevant pathophysiological conditions (cancer and vascular malformations). Then I shifted my research interest into the Stem Cell field by studying the transcriptional and epigenetic regulation of stem cell pluripotency and somatic cell reprogramming. Currently, my lab is interested in understanding epigenetic and epitranscriptomic regulation of transcription in the mammalian genome that governs cell fate decisions during embryonic development and human diseases. We aim to develop novel therapeutic strategies for age-related disorders (i.e. cancer) as well as rare diseases (i.e. multiple familial cerebral cavernomatosis). For this purpose, we use a variety of methods in molecular biology, genomic and proteomic approaches, genome editing and bioinformatics.

KNOW-HOW

Histone, DNA and RNA modifications

Somatic cell reprogramming (iPSC technology)

Pluripotency (maintenance and differentiation)

Disease modeling

Molecular biology 

Cellular biology (mouse & human)

Several omics approaches & Bioinformatics

KEY PUBLICATIONS

Folgueira C et al. Hypothalamic dopamine signalling regulates brown fat thermogenesis. Nature Metabolism 2019 Aug 19 . 

Seoane-Collazo P et al. SF1-Specific AMPKα1 Deletion Protects Against Diet-Induced Obesity. Diabetes 2018 Aug 13 . doi: 10.2337/db17-1538.

Guallar D and Fidalgo M. New mechanisms of epigenetic regulation through the cell identity regulator TET2. Genetica Medica News 2018 Mar 28.

Guallar D et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics  2018 Feb 26. doi: 10.1038/s41588-018-0060-9. 

Wang J, et al.YY1 positively regulates transcription by targeting promoters and super-enhancers through the BAF complex in embryonic stem cells. Stem Cell Reports. 2018 Feb 26. doi: 10.1016/j.stemcr.2018.02.004.

Zhang Y*, Xian Y*, Yin Q*, Du Z* et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nature Genetics 2018 Jan;50(1):96-105. doi: 10.1038/s41588-017-0003-x. 

Huang X*, Balmer S* et al. Zfp281 is essential for mouse epiblast maduration through transcriptional and epigenetic control of Nodal signaling. eLife 2017 Nov 23;6. pii: e33333. doi: 10.7554/eLife.33333

Faiola F et al. NAC1 regulates somatic cell reprogramming by controlling Zeb1 and E-cadherin expression. Stem Cell Reports 2017 Jul 24. pii: S2213-6711(17)30311-9. doi: 10.1016/j.stemcr.2017.07.002. 

Saunders A*, Li D* et al. Context-dependent functions of Nanog phosphorylation in pluripotency and reprogramming. Stem Cell Reports. 2017 Apr 18. pii: S2213-6711(17)30129-7. doi: 10.1016/j.stemcr.2017.03.023.

Saunders A et al. The SIN3A/HDAC Corepressor Complex Functionally Cooperates with NANOG to Promote Pluripotency. Cell Reports.  2017 Feb 14;18(7):1713-1726. ​doi: 10.1016/j.celrep.2017.01.055. 

Fidalgo M et al. Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States. Cell Stem Cell.  2016 Sep 1;19(3):355-69. doi: 10.1016/j.stem.2016.05.025. 

Aguilo F et al. Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. 2015 Dec 3;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. 

Ding J et al. Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming. Cell Stem Cell. 2015 Jun 4;16(6):653-68. doi: 10.1016/j.stem.2015.04.001. 

Gingold JA*, Fidalgo M* et al. A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Molecular Cell. 2014 Oct 2;56(1):140-52. ​doi: 10.1016/j.molcel.2014.08.014. 

Costa Y et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature. ​2013 Mar 21;495(7441):370-4. doi: 10.1038/nature11925. 

MacArthur BD*, Sevilla A* et al. Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity.  Nature Cell Biology. ​2012 Nov;14(11):1139-47.  doi: 10.1038/ncb2603. 

Fidalgo M et al. Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proc Natl Acad Sci U S A. ​2012 Oct 2;109(40):16202-7. doi: 10.1073/pnas.1208533109. 

Fidalgo M et al. Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells. 2011 Nov;29(11):1705-16. ​doi: 10.1002/stem.736. PMID: 21915945

 

“”

“”